
~ ISSN 0265-2919

creniv ene treet

“iin teh nhigeta hericichabinvchopnieslet

LEER TOT isk o pagesdapine es jsocaplaeponnepisigianns

APPLICATION

NEW MUSICAL EXPRESSIONS We
look at the development of the sequencer

HARDWARE

ONE STEP BEYOND How well does the
Sinclair QL measure up to expectations?

BLACK MAGIC Necromancer is a game
demanding skill and fast reactions

ee : one
eas i : ee : :

cena i i Hina i i HEH Et HH aE # i HH ditt LEER Peete tity : : Huet i Hi
ae HH a ce

H HEHE H i eee tint
if fi nth ith Hitt

i

Hit
if

ADVANCE TO LOGO The start of
language series

a New

EAPROM TO ELECTROSENSITIVE
A weekly glossary of computing terms

PROGRAMMING PROJECTS

SWINGTIME A program to play
Hangman

THE HUMAN FACTOR We look at the
importance of user-friendly program design

MACHINE CODE

HIGHLY PROCESSED CODE The first in
a new course for Dragon and ‘Tandy owners

NEW HORIZONS Psion are a versatile and
forward-looking team 5 20

Er

_ __ |. _ _

HOT WIRED We relaunch our practical ae CLUBSPOT A guide to the micro user’s _|NSIDE iv

series with a new project 514 Prestel pages BACK COVER

COVER PHOTOGRAPHY BY iAN McKINNELL

i

When Clive Sinclair announced the ZX
Spectrum, he claimed that it was
comparable with the BBC Micro, which cost
twice as much. Two years later, when
announcing the QL, he was even more
ambitious, and compared the QL with
computers costing five times as much, such
as the IBM PC and the Apple Macintosh.

Itis little wonder that so many people are confused
about the Sinclair QL and its real worth. Firstly
there was the massive media hype of the launch.
The public were told that the QL was the most
advanced home computer to date, boasting a 32-
bit 68008 CPU, a four-program suite of integrated
business software and a resident BAsic that would
surpass any version available.

However the excitement provoked by the QL’s
announcement gradually wore off, as delivery
dates approached and receded, and people
realised that perhaps the claims were slightly
exaggerated. A real backlash came when it was
realised — Sinclair’s assurances notwithstanding
— that the machine was nowhere near ready for
public release: all the money paid by the advance
mail-order customers was just going to sit in the
Sinclair bank accounts earning interest, while the

Meet The Family

The Sinclair name has appeared
on a considerable range of
products: from audio amplifiers
and the celebrated Black Watch,
through calculators and
computers, to the long-awaited
flat-screen television and
electric car. Technical ingenuity
and innovation, stylish hi-tech
product design, and ambitious
marketing strategies have been
Sinclair hallmarks from the
start, though critics would say
that press-release engineering,
gimmickry and over-optimistic
delivery schedules were more
accurate labels

gare

IAN McKINNELL

anxious public waited and recalled previous
Sinclair machine launches and deliveries.

There was, however, one big difference
between the Spectrum and QL launches —
although the Spectrum 28-day delivery promises
were not met, nonetheless review models of the
machine were given to journalists immediately
after the launch, the machines did work, and they
were. virtually identical to those eventually
released to the public; in the case of the QL,
however, Sinclair had to admit that the promised
‘Supersasic’ and the operating system would not
fit into the allocated 32 Kbytes of ROM — 48
Kbytes were going to be needed, but there was no
room on the circuit board for the extra chip!

Rather than waste time and money redesigning
the circuit board, the Sinclair staff came up with
the now-infamous ‘kludge’ (sometimes wrongly
called the ‘dongle’). This was a small black plastic
box protruding from the QL’s cartridge port and
containing the missing parts of BAsic and the
operating system.

This at least enabled Sinclair to get some
working machines out of the factory door, with the
promise that the machines would be ‘de-kludged’
by a true upgrade later. The original 28-day
delivery claims had by now turned into three
months. Several versions of the operating system

THE HOME COMPUTER ADVANCED COURSE 501

 HARDWARE/SINCLAIR QL

went out in quick succession, each with its own
flaws. Sinclair finally settled on one called the
AH’, and this has become the first version to be
released in volume.

_ Consumer reaction to the kludge was not
favourable — it was a visible proof of the machine's
inadequacy, and hardly an advertisement for
reliability. To get round this, Sinclair came up with
an idea guaranteed to set any electronic engineer’s
teeth on edge — as there was no socket on the
circuit board for the third 16 Kbyte ROM chip, it
was placed ‘piggyback’ fashion on top of the
existing chip, and all but one of the chip’s 28 legs
were individually soldered onto those of the chip
below. The last leg was connected by a flying wire
to another part of the board, so that the new chip
could be accessed independently of its host. This —
meant that the kludge could be removed, but
nothing had really changed.

All the early machines used EPROMs rather
than ROMs, saving Sinclair the time it takes to
produce ROMs but costing the company money
— these 16 Kbyte EPROMs were selling at £80
each, and each QL used three of them. Although
Sinclair would have bought at discount, the price
must still have been a desperately high fraction of
the machine's price, thus possibly forcing Sinclair
into an early acceptance of the AH version
operating system, despite its various bugs. Once it
was settled upon, the ROMs to replace costly
EPROMs could be manufactured and installed,
and the company could hope to start turning a
profit on the machine. Unfortunately, a debugged
AH version is unlikely to appear before 1985.
With this in mind, how can we assess the QL? It

can be seen as two machines in one: a powerful
home computer, or a modest business machine,
and, as such, it can genuinely claim to bea pioneer.
It is probably closer to the conventional idea of the
home micro, however: it is small, can produce a
television display, has a resident Basic, is sold by
mail order (and by the high street shops soon), and
has high-resolution colour graphics and joystick
ports. Two features support its claims to business
machine status: the built-in Microdrives provide
reasonably substantial mass-storage (certainly by
comparison with cassettes), and the machine
comes “bundled’ with four applications programs
— word processor, spreadsheet, database and
graphics support.

As a home micro, the QL looks like very good
value, given the Microdrives and the software,
especially since it is of good quality, and since
home users rarely see databases or spreadsheets.
On the other hand, most home users don’t need
these applications, and don’t have a use for them.
The typical home user likes playing games and
writing BASIC programs, which is fine in the latter
case, since Supersasic is certainly one of the best
dialects yet produced. There is an obvious
shortage of commercial software for the QL, given
the problems with producing the machine.
Software production is not helped by the new
Microdrives’ incompatibility with the Spectrum

502 THE HOME COMPUTER ADVANCED COURSE

version, by the QL screen’s having a different
layout from the Spectrum’s, and by the operant
system differences and problems.

There are, apparently, still bugs in Sipemanie
and the editor is very similar to the line editor used
on the Spectrum; this is not a bug, of course, but it
isn’t exactly Fifth Generation standard, either. The
addition of BBC-like procedures and functions,
and a SELECT structure similar to pAscAv’s CASE are
very real improvements, though the ON ERROR
command is not implemented. The graphics are
very good, and the sound is at least audible,
though otherwise disappointing.

As a business machine, the QL is less

oe ay

aye

‘YARULATE

“Capa coor |,

ORT

o era.

Integrated Software
All four packages have similar
screen formats and commands,
and clear, concise displays.
Data can be moved between
them via the Microdrive. All four
programs have bugs in this
initial version, such as non-
functioning commands and
input/output errors, but these
should be easy to fix in
subsequent versions. Quill, a
word processor, allows for 40-,
64-, or 80-character displays;
typed characters are slow to
appear on screen, which can be
irritating. Abacus is an
innovative spreadsheet with
many built-in functions and the

_ ability to label and address a 2
group of ceils, but the 15K
workspace left is virtually
useless. Archive is a database
with built-in commands for
simple filing tasks. It can also
be programmed via an internal
language similar to
SuperBASIC, but the
Microdrives make it very slow.
Easel creates bar graphs, pie
charts, and line graphs of
numeric data, and can switch
rapidly between formats

&

convincing: the bundled software is good value,
but any business user will surely want an accounts
package at the least, and the spreadsheet program
leaves only 15 Kbytes of user RAM, which rules
out most serious financial models. The speed and
questionable reliability of the Microdrives calls the
whole QL mass-storage capability into question,
especially as there is no disk drive interface. The
keyboard seems unlikely to withstand heavy daily
use, and it’s difficult to imagine proficient typists
accepting its peculiarities. The lack of commercial
software is even more of a drawback for the
machine’s business users, and that plus the mass-
storage deficiencies seem likely to end the
machine’s business career before it begins.

Like all Sinclair products the QL is exciting,
innovative, controversial and _ occasionally
frustrating. Though it cannot fairly claim to meet
any of its targets, the OL has given its competitors
a new standard to meet, and a new benchmark for

comparison.

IAN McKINNELL

i He

IAN McKINNELL

ROSALIND BUCKLAND

THE HOME COMPUTER ADVANCED COURSE 503

KEVIN JONES

Progress Report
The game in progress, showing
the development of the hanged
man and the Picatession of the
word

Hangman is a traditional wordgame that is
easily implemented on home computers and
can prove educational. Programming a
Hangman game provides us with an
opportunity to explore string manipulation.
We discuss the structure of a simple version
of the game, and give listings for the BBC
Micro and the Spectrum.

Probably everybody has played a game of
Hangman at some time. The object of the game is
simply to guess the letters in a word. The only

LIZ HEANEY

information given is the number of characters in
the word, all of which are represented by dashes. A
correctly guessed letter is displayed in its proper
position, and an incorrect guess causes a part of a
picture of a man on a scaffold to be drawn. In our
program, there are 10 parts to this drawing, which
is shown on the right-hand side of the screen. If all
10 parts are completed before you've filled in all
the letters in the word, then the man is hanged and

you've lost the game. _
The basic principle of our program is very

simple. It involves checking to see if a letter entered
at the keyboard is contained in a randomly
selected ‘secret’ word (one of 11 words held in DATA
statements at the end of the program). If the
guessed letter is present, it is displayed on the
screen in its correct place. If the letter is not
present, the program must display it anyway, to
remind the player that it has already been used. In
addition, of course, the program must then be
made to jump to a subroutine that will draw a part
of the hanged man.

The words that our programs use are stored in
lines 1020 and 1030 in both versions. There is no
reason why you can’t add to these, using more DATA
statements. But if you do add your own lexical

504 THE HOME COMPUTER ADVANCED COURSE

= : :

SWINGTIME

brain-teasers, you must remember that they
should not be more than 10 letters long. (Although
this restriction could be lifted by altering lines 30
and 50.) Also, the total number of words in the
DATA statements must be added up, and the value
of N in line 20 altered accordingly.

At the beginning of the program, all of the words
are read into an array. One of the elements of the
array is picked at random, and a line of dashes
corresponding to the length of the word is
displayed on the screen. The rest of the game
consists of a repetitive loop. When a letter is

entered from the keyboard it is screened: if it is
more than one letter, or not a character at all, then |
the program makes a BEEP and loops back for
another input. The letter is also checked against
the list of letters that have already been tried in the
game. If it has been used before, then a warning is
flashed on the screen and a new letter read.

If the trial letter is acceptable, it is added to the
displayed list of used characters, and then
compared against each letter of the word in turn. If
it matches in any position, it is put up on the screen
in place of the corresponding dash. If no match is
found in the whole word, a subroutine is called to
draw a part of the hanging scene.

If the player has had 10 wrong guesses then the ;
man is hanged, a short consolatory tune is played
and a new word is selected. Alternatively, if all the
letters of the word have been correctly placed, a
congratulatory musical phrase is played.

Our two versions of the program can be easily
adapted to most home micros. The subroutines to
draw the man and the scaffold, of course, need to
be especially adapted to the graphics capabilities of
individual machines. Programmers with an
interest in creating interesting screen displays may
like to elaborate on the drawn result: a hanged man
gently swinging in the breeze if the player fails to

win, perhaps?
Other refinements can also be added to the

game. We suggest that it may be a good idea to add
a check at the beginning of the program to see that
a selected word has not already been used. As the
program stands, the selection of the word is a
purely random matter, and the same word could
be chosen twice in succession.
Even more helpful would be a routine to screen

the inputs so that only upper case letters were
accepted as trial letters. (The program as given will
accept any character as a trial ‘letter’.) Lower case
letters, numbers, and symbols could be checked by
their ASCII codes and rejected. As it is given here,
however, our program does play a good game of
Hangman, and offers opportunities for
adventurous programmers.

HANGMAN GAME/PROGRAMMING PROJECTS
00000000

A Case In Point
Notice that you must prompt the

Hangman player to use either

upper- or lower-case letters,
according to the case of the
mystery word

og

THE HOME COMPUTER ADVANCED COURSE 505

Founding Father 7
Seymour Papert, the founding |
father of LOGO, is shown here at
a conference sponsored by
Commodore in 1983. Papert is
now associated with LOGO
Computer Systems, Inc, (LCSI),
which provides LOGO programs
for the Sinclair Spectrum, Atari
computers, and others

RRR ib eg

We begin a series of articles about LoGo, a
programming language designed primarily
with education in mind. We look at the
history of its development, the basic
structural philosophy behind the language
‘and the types of users it may appeal to.
Ti a

Having examined sasic and machine code
programming in detail, we begin our course on
other popular computer languages with a series of
articles about Loco. You may wonder why we

have chosen this language as a subject for an
extended learning programme. After all, there are
many other languages that perform certain
functions extremely well, and home computers are
rarely supplied with Loco. Nevertheless, LoGo
does offer some very attractive features to the
home computer user. |

First of all, LoGo is one the best introductory
languages available on any computer today. Of
course, if you have been programming in BASIC,

you may feel little need to know about an
introductory language. Yet, even for the
experienced BASIC programmer, LOGO Can serve as
an excellent introduction to ‘structured’
programming and to the use of procedures instead
of statements. Secondly, Loco is available on
cartridge or cassette for most home computers. In
fact, one of the best versions of Loco available is
written for the Spectrum and distributed by
Sinclair. Finally, LoGo is a very powerful learning
system. Though not an easy language to master by
any means, LoGo is one of the few programming
languages that is easy to start working with. ©

506 THE HOME COMPUTER ADVANCED COURSE

Loco’s origins lie in the artificial intelligence
language Lisp, which was invented in the early
1960s to make it easier for computers to deal with
complex data structures. Its name derives from the
fact that it is a ‘list processing’ language, which
means that its basic data structure is a list, rather
than a character string or numeric array, as in
BASIC. Lisp’s essential functions manipulate the
data within a list. List elements can be simple
symbols or whole lists. The advantage of this
approach is that non-numeric data (such as a
sentence) is more easily processed in this manner.

Lisp relies heavily on the principle of recursion,
whereby something (usually a function or
procedure) is defined in terms of itself. In the case
of Lisp, the item being defined is always a list. These
are not accidental characteristics of Lisp, but arise
from its origins in computer-based investigations
of natural language and human intelligence.
However, the language is not an easy one to learn,
and in 1968 a group of people associated with the
Massachusetts Institute of Technology (MIT) set
about devising a language for children based on
LISP.

The charismatic leader of the group at MIT was
Seymour Papert. He had previously spent a
number of years studying cognitive (learning)

¢'

‘J

development among young children with Jean
Piaget (1896-1980), the leading educational
psychologist of his generation. On moving to MIT,
Papert began to work closely with an artificial
intelligence expert, Marvin Minsky. In his work
with Loco, Papert attempted to bring the ideas of -
both his colleagues together, uniting theories of
cognitive learning and artificial intelligence.

Work on LoGo continued throughout the
_ 1970s, and other groups were set up to experiment
with the new language. The most notable of these
was based in Edinburgh. All of this development
work was carried out in university research
departments using mainframes or minicomputers.
It was only with the arrival of microcomputers that
LOGO became more widely available.

Loco is a sophisticated language that needs a
lot of memory, both for the code and as working
space. The Loco interpreters. found on micros
typically require around 30 Kbytes of memory,
_and another eight Kbytes or more for the graphics
display. All of this before you even start
programming! So, although it was possible to
implement simple BAsic interpreters on home
micros from the moment they were marketed, it
was not until home computers with over 48
Kbytes of RAM were widely available that Loco
on micros became a feasible proposition.

But it was Seymour Papert’s Mindstorms (Basic
Books, 1980) that took Loco out of the research
departments and brought it to the attention of a
much larger group of people. In his book, Papert
develops a vision of how computers might be used
in education. This is a result of the synthesis of
three sets of ideas: theories of cognitive
development, artificial intelligence and _ the
movement in education towards child-centred
learning. Papert wants to see children
programming computers, rather than computers
programming children (which, he argues, happens
in most ‘computer aided instruction’).

The book looks forward to the emergence of a
new ‘computer culture’, in which ‘formal’ ideas
previously considered beyond the capabilities of
children will be easily handled by them. They will
be able to do this because of the way they have
used computers to explore formal ideas. It is this
active, co-operative (pupil-to-pupil and pupil-to-
teacher) and unstructured exploration of ideas
that constitutes the ‘Loco philosophy’ underlying
the language’s use in education.

Papert writes and convinces by the sheer power
of his rhetoric. However, there are a number of
serious problems with the theory. There is very
little experimental evidence to back it up, despite a
number of studies; Piaget’s theories of cognitive
development are turned into a prescription for
education in a way that Piaget never intended; and
there are problem-solving areas (even in
mathematics!) that Loco doesn’t cover.

As teachers use LOGO more widely in the
classroom, they are finding that not everything
works in the way that Papert describes, and they
aren't getting the results they had hoped for. There

is a danger of disillusionment, but once we set
aside the over-enthusiastic claims of what the

language can do, Loco still remains an excellent
way of introducing computer concepts, of
exploring certain kinds of ideas and developing
problem-solving skills.

Loco on present day micros has too little
workspace and runs too slowly. To some extent it is
a language that is waiting for the hardware to catch
up with it. But as a language for learning it has no
serious rivals.

Authorised Versions
Shown here are the most
comprehensive and well-
documented versions of LOGO
for the Commodore 64
(Terrapin-MIT), Sinclair
Spectrum, and Atari computers
(LCSI). Although expensive,
these are the manufacturers

authorised versions of LOGO
and will most closely resemble
the original MIT language.
Commodore 64 LOGO is
‘available on disk for £34.95;

Atari LOGO comes on cartridge
for £59.95; and Sinclair LOGO
is a cassette-based version for
£39.95. There are less
expensive LOGO programs on
the market. Some, particularly
for the Spectrum, cost as little
as £8.95

Coming soon...

the Turtle

THE HOME COMPUTER ADVANCED COURSE 507

EAPROM oe Bed:
The electrically alterable programmable read-only
memory is one of the newest types of
semiconductor memory. To understand its
operation, we must compare the EAPROM with
other forms of memory. A normal ROM 1s mask-
programmed, meaning that its contents are fixed
during the manufacturing process. A PROM
(programmable ROM) is like a blank ROM; a
‘PROM burner’ allows its contents to be
programmed by the user, but once programmed
these contents may never be changed. An
EPROM (erasable PROM) has a quartz window
on the chip’s surface. Exposing this window to
ultra-violet (UV) light will erase the contents and
allow the user to re-program the device. EPROMs
are used widely in development systems and may
be used instead of ROMs, which are economic
only when manufactured in thousands of units.

_ The EEPROM (electrically erasable PROM) is
similar in operation to the EPROM, but uses
electricity instead of UV light to erase the chip’s
contents. The EAPROM, however, allows
individual memory locations to be altered,
although writing information to the chip is
considerably more complex, and hence slower,
than reading information from it. EAPROMs are
therefore used only in applications in which the
memory contents change little and where these
contents must be retained when the power is
switched off. |

EDGE CONNECTOR
The edge connector is the simplest form of
interface connection, and is a favourite among
manufacturers of less expensive home computers.
The contacts are printed onto the edge of the
printed circuit board by using the normal etching
process, and the PCB is then trimmed to allow the
contacts to protrude by about one centimetre.
Well-made edge connectors use gold-plated
contacts, as copper oxidises when exposed to air
and this can result in bad connections. More
expensive machines dispense with edge
connectors and use purpose-designed interface
sockets such as DIN sockets or 25-way D-
connectors.

EDITOR
An editor is a program that allows the user to
create and alter patterns of symbols. These
symbols may be graphics, program listings or, in
the case of a word processing editor, English text.
Electronic editing relies on several basic functions:
insertion and deletion of text, overwriting, etc.
More sophisticated editors allow the same
function to be performed in a variety of ways — the
user may delete a character, a word, a sentence, a
paragraph or a page, for example — and some
incorporate a ‘search and replace’ function that
allows any symbol, word or phrase to be replaced
by another. A ‘full-screen editor’ permits
alterations to be made at any position on the
screen. The more common line-based editor

508 THE HOME COMPUTER ADVANCED COURSE

— Copy Editor
On the Spectrum, a copy of the line indicated by the cursor is
edited at the bottom of the screen

je

ecoss

DATA
STOP ONPHONENGES

<3

S
S

=
S
3
9

2

2.

a
Ke

a

requires the user to specify the line to be altered,
and permits editing only on that line.

ELECTRONIC MAIL
Communication is rapidly becoming the most
important factor in business microcomputing —
today’s users rely increasingly on information that
may be retrieved via the telephone network. One
of the most popular off-the-shelf applications is
electronic mail, which is a facility for sending
documents and messages from one micro user to
another. This requires that each user has a
microcomputer (preferably with printer
attached), a modem and an electronic mail
software package. Short messages may be typed
on the keyboard while the computer is on-line. To
save on telephone charges, however, longer
documents are usually prepared off-line by using a
conventional word processing package. The
communications utility then reads the finished file
from disk or cassette and transmits it character by
character.

ELECTROSENSITIVE PRINTER
Popularly known as_ ‘thermal’ printers,
electrosensitive printers are cheap to construct,
quiet and relatively fast in operation. The major
drawback with these devices is the special paper
that is required; this is silver-coated and totally
unsuitable for serious use as it is often difficult to
decipher text printed on it. It is also considerably
more expensive than plain paper. As a result of
these limitations, electrosensitive printers are
most often used as cheap devices for listing
programs — a good example is the Sinclair ZX
printer, which uses narrow rolls of paper giving
only 32 characters per line. ©

Printed characters are built up from dots, but
the moving pins of a conventional dot matrix
printer are replaced by a solid-state array of
needles, to which an electrical charge of several
thousand volts is applied. The resulting spark
burns off the metallic coating on the paper to leave
a small black dot. The high voltage is not a
problem as the system does not produce a large
current and hence is not dangerous to the user.

~

ij

£p

NEW_ MUSICAL
EXPRESSIONS
Lae seer

In the introduction to this series, we saw
how the use of electronics in music-making
has developed. To begin with, simple tones
were produced with oscillators, and the
range of available sounds was limited.
Today digital encoding of sound — called
sampling — is available, and musicians can
use any sound to produce music.

Despite the many developments in this field over
the past 60 years, it is worth remembering the
simple controlled voltage characteristics of an
oscillator. When any physical object — whether a
bee’s wing or a human vocal cord — vibrates, the
surrounding air expands and contracts very
rapidly, producing a waveform that is interpreted
by the human ear and brain as sound. If an
electrical voltage is applied through a modulator
(like a car’s induction coil) to a tiny strip of metal,
the metal will vibrate, creating the simplest wave
form — the sine wave. The pitch, or frequency of
vibration, of the resulting oscillation depends on
the voltage applied and, to a lesser extent, on the
density of the metal strip. This tiny sound-
generating unit is called an oscillator. Voltage
control has been the primary method of producing
synthesised music for decades.

The MIDI interface, first announced in 1983, is
a unit that is designed to allow one digital system
(such as a computer) to control another — a
synthesiser, for example. Its development is a
result of the advances in electronic music-making
over the last decade or so.

For several years, recording studios have
contained many different pieces of sound-
processing equipment — an impressive array of
filter and reverberation units is often seen as proof
of a studio’s worth. Similarly, in live performance,
a synthesiser player in the 1970s had to be entirely
surrounded by banks of keyboards, each with a
multitude of controls.
When considering what happens in a well-

equipped recording studio, it is useful to think of
the party game ‘Chinese Whispers’. In this game, a
sentence is passed from person to person.
The last player then recites what he has heard of
the original sentence. A straightforward sentence
may have been changed into a collection of
nonsense words, or vice versa. A similar process
occurs in the recording studio, but here the original
sentence is a collection of musical sounds. And
instead of a chain of listeners, each producing a
garbled version of the original, there is a group of
sound-processing units, each one controllable and
doing a specified task. Anyone use this

equipment would probably use a central
plugboard to make connections, or else connect
units together directly. The controls on each unit
would be calibrated manually in a matter of
seconds by a skilled sound engineer, but the
problems of synchronisation and communication
inherent in such connections are easily imagined.

The keyboard player of the 1970s had a
different problem. Here, the immediate difficulty
was not how to produce a sound from each
instrument in succession — the player had only to
move a hand from one keyboard to another. It was
more likely that he would experience difficulties
when two keyboards were to be played at once, but
harpsichordists and church organists had known
how to do this for centuries. Even complex music
like a Bach fugue could be performed on one
keyboard alone, and, anyway, most studio work
would not have been done in one ‘take’. Instead,
each synthesiser part would be recorded on its
own, with subsequent parts superimposed on the
first, using different parts of a multi-track tape.
Performing such music however, needed one
skilful artiste, or two average musicians, or tape
loops and a sound engineer.
But the most important development of the

1970s was in the sound-generating units inside the

Twin Set
Alannah Currey, Tom Bailey, and
Joe Leeway, of the Thompson
Twins (shown seated front to
back). Originally a seven-piece
‘arty’ band, they now perform
as a trio with taped, sequenced
rhythms as backup

THE HOME COMPUTER ADVANCED COURSE 509

STEVE CROSS

synthesiser, and in instrumental techniques in
general. A good example of this is the emergence
of the keyboard-controlled bass synthesiser. In the
1960s, the Motown style of pop/soul music relied
heavily on the electric bass. During the 1970s,
funk bass players developed a level of virtuosity
that rivalled that of lead guitarists; by the end of
the decade this style could go no further and the
keyboard-controlled bass synthesiser emerged.
This led to new problems for the keyboard player,
who was now required to take on the functions of
the bass-player — working with the drummer to
‘anchor’ the rhythm section in strict time — and
who was now not playing ‘keyboard’ music. As

Step Up And Play
Electronicsoundscanbe digital to analogue converter
produced by programming the _— driving a loudspeaker.
output of tone and/or white- Sampling gives an
noise generators (this is how accurate sound picture
you create sound ona (depending on the number of
microcomputer); or, by waveform samples stored),
sampling real sounds, making —_ which would otherwise be
adigital ‘template’ ofthe = —_—_—i+hard to program except by
sounds, and using that trial and error —-try
template to recreate the synthesising a snare drum

sounds’ waveform through a beat on your micro!

$10 THE HOME COMPUTER ADVANCED COURSE

new analogue synthesisers appeared on the
market, trumpet, saxophone and drum sounds
‘became available. More and more keyboard
players turned to a simple device to deal with these
new responsibilities. This was the sequencer. -
A sequencer is a device that co-ordinates

several independent strands of music into a
unified work according to a specified pattern. It
operates by using controlled voltages that are fed
through an oscillator to produce a series of tones of
different frequencies. The higher the voltage, the
faster the metal strip vibrates, and the resulting
waveform is heard as a high-pitched sound. A
sequencing unit is used to control the oscillator.
This is necessary because music is rarely
composed of nonstop sound sequences — short
gaps or long silences are required, both to create
rhythmic patterns and to form the overall structure
of music. A gap in a sequence pattern is caused
when the control unit sends a zero voltage to the
oscillator. The purpose of ‘sequencing’ is to ensure
that the gap occurs in exactly the same place each
time the pattern repeats.

Few synthesisers in the late 1970s had complete
sequencing facilities, but musicians were quick to
use what was available. The pulsating disco music
produced by Giorgio Moroder with Donna
Summer is very much sequencer music, and the
new British synthesiser bands developed a
completely new style to match the new equipment.
No longer was it necessary to play every single
note with a series of grand gestures, in the style of
Rick Wakeman. Instead, a whole sequence, or riff,
could be started or stopped by changing one
setting. In the meantime, the player could move
away from the keyboard, dance in time to the
sequencer beat, and then return to another

Analogue
_ The output of the microphal

is simply a voltage-time
waveform — an electrical
analogue of the sound.

speaker reproduces the soun

Digital
The analogue to digital

_ converter ‘digitises’ the
- ; continuous waveform into a

sequence of discrete voltage
measurements. The more of

. these measurements taken,
re the more accurate the digital

~-_ picture of the sound

MICROPHONE

Ny

Ma. eae

'

oe =
KOO LL bbb bbb:

SAMPLE MEMORY

Applying this waveform to a...

keyboard to play a melody or group of chords. In
the mid-1980s, the whole performance style of a
group like the Thompson Twins is influenced by
the existence of the sequencer.

- When digital synthesisers first appeared, their
design was often modelled on their analogue
predecessors. Musicians found that their
sequencing skills were further developed by the
new instruments, and it is in this area of digital
control that most interest has been generated. This
is demonstrated by the recent popularity of the
Linn drum machine, one of the first units to use
sampled sound — in this case provided by top
American session drummer Steve Gadd. On the
Linn machine, drum patterns are recorded in
digital form in the same way that computer data is
recorded on floppy disks. The resulting sequences
of ones and noughts are then encoded onto ROM
chips. By accessing a particular chip, a musician or
producer can reproduce the original sound as if it
were being played live. The great benefit of
digitising the sound is that output may be altered at
the console, diverging from the original pattern in
time, rhythm, volume, etc.

By now our two original examples — the
recording studio and the onstage synthesiser
player — have a number of features in common. In
addition to recording music, studio work reflects
the video boom that has occurred in the last few
years. Video has brought a new style and
consciousness to image-making: producers
demand that the accompanying music reflects this.

If the music accompanying a video is produced
by conventional instruments, synchronisation
with the on-screen image is very similar to

™, techniques used with film. If, however, the music is
wmade up of individual sounds and sequences

Electronic Drum Beat
A drum phrase can now be
constructed in any order on
the synthesiser keys (each
corresponding to a beat in the
bar). On playback, a scan
a) keyboa

STEP TIME

set time signature (or step
time), playing a digitised
drumbeat if that key has been
hit, and illuminating its LED.
The phrase can thus be
created and edited layer by

SS &

produced by digital synthesisers, there is much
that can go wrong. Let us imagine that on a
particular video a vase of flowers is dropped to the
ground, where it smashes. The musician working
on the score has produced a sequence that
accelerates up to the point where the vase drops,
and given a percussive chord for the moment the
vase hits the ground. Recording starts and the
sequence begins, but it soon becomes clear that
the rate of acceleration has been miscalculated
and the sequence ends while the vase is still on the
table. The musician then tries the percussive
chord, which is recorded on a different tape track.
Recording starts again, and this time the chord is
recorded a split-second too late. The musicians
need a way of linking up the digital instruments so
that everything happens at the nght time. What is
needed, then, is a digital interface.

The synthesiser player has similar problems,
this time in a live performance. His equipment
includes two digital synthesisers, made by
different manufacturers, and a Linn drum
machine. He has sequences set up on one
synthesiser and on the Linn, but as they do not
keep in time together he usually ends up running
the Linn automatically and playing the other
manually. The result is that his second synthesiser,
bought for the quality of its pre-set sounds,
remains untouched. This musician needs a way of
linking up his instruments so that all the sequenced
material occurs in the right place. He also requires
that the sequencer on his first synthesiser should
play the pre-set sounds on the _ second.
Furthermore, whatever equipment he uses should
be applicable to more than just his own
synthesisers — he may well find himself in the
studio mentioned above that has so much trouble
with video synchronisation!

In the next instalment of this series, we will look
in detail at the MIDI interface and examine other
examples of sequencing techniques.

THE HOME COMPUTER ADVANCED COURSE 511

Dynamic Duo
Donna Summer, with producer
Giorgio Moroder, was one of the
first pop artists to use

| electronically produced rhythms
| ~ and synthesisers in recorded

music

COURTESY OF RECORD MIRROR

THE HUMAN FACTOR
An important aspect of program design is
the ‘man-machine interface’ — the part of
the program that deals with the transfer of
information from user to program and vice
versa. Here, we investigate the factors to be
considered when designing this interface.

Computer programming was for many years a
mysterious topic that was understood only by
professionals who were prepared to devote much
time and effort to the subject. Before the advent of
the microcomputer with its typewriter-style
keyboard, programs were often entered one byte
at a time via switches on the computer’s front
panel, or by punching holes in tapes on a teletype
console.

Today’s user is, by contrast, a pampered
creature. Manufacturers no longer expect the
computer owner to struggle with machine code,
and the phrase ‘user-friendly’ was coined to
indicate that micros may be used and programmed
by anyone, regardless of experience. In 1982, the
Alvey Committee, in a report entitled A
Programme for Advanced — Information
Technology, identified the man-machine interface
(MMI) as one of the four main areas of research
and development, together with software
engineering, very large scale integrated circuit
(VLSI) design and knowledge-based systems.

In any application, the interaction between
computer and user, where data or instructions are
passed between the two, is of paramount
importance. This ‘dialogue’ is conducted through
the computer’s input/output (I/O) devices, with
the keyboard serving as the main source of input
and the display screen providing the output.
Joysticks, paddles, mice, touch screens and other
devices may also be used for input, while the
computer can utilise a printer, sound (or speech)
generator or even a robot to express the output.

In addition to any constraints imposed by the
I/O devices used, the dialogue between user and
machine is influenced by software. For example,
the computer’s operating system (OS) controls
many details of the screen and keyboard
operation. The rate at which keys repeat when
held down, and the delay between repetitions, is
set by the operating system, which also buffers
keystrokes to allow the computer to store
characters that have been entered faster than they
can be displayed. This is very important as it
affects the speed at which the user may enter
information into the computer. The buffer size is
critical and should be known by the user — the
CP/M operating system, for example, buffers a

512 THE HOME COMPUTER ADVANCED COURSE

single keystroke; many home machines buffer 10
strokes or more.

But keystroke buffers may cause problems. An
experienced user who is working with a menu-
driven system may know in advance that the menu
choices he requires are 2 from the main menu, 5
fromthe next menu, then 3, 4, 6, etc. Because he is
familiar with the system, he types his choices at
great speed. With a 10-character buffer, the user
will end up where he wanted to go because the
keystrokes will all be ‘remembered’ in the correct
sequence. With a one-character buffer, the time
taken to display the second menu may be longer
than the time taken to type the sequence. Thus,
instead of selecting choice number 5 from this
menu, then 3 and so on, choice number 6 alone is
made (because this is the only character held in the
buffer) and the system stops there.

But a large buffer can also lead to problems. A
menu program that takes a long time to react toa
keypress (this may occur if the choice leads to a file
being read) may cause the user to think that
nothing is happening. The natural response is to
try the last choice entered, then. press an
assortment of keys until there is a response. This

may lead to the program attempting to process the
spurious characters held in the buffer; the results
may be surprising! ?

‘Garbage collection’, which involves clearing
the computer’s memory registers to free working
space is another source of problems. This can
make a program appear to ‘hang’ for long periods,
during which the user may again try to take
corrective action. Garbage collection is likely to
cause problems in large programs that do a lot of
string handling. Some versions of BAsic allow the

.
-

:

a

programmer to force a garbage collection; it is a
good idea to do this at frequent intervals — but the
user should be given a ‘please wait’ message as the
computer will appear to be doing nothing while
garbage collection is being dealt with.

The way that a programming language handles
input and output will influence the design of the
interface between computer and user. The
superior string-handling facilities of BAsic will lead
to more sophisticated use of strings in the human-
computer dialogue than is allowed by languages
like PASCAL. Basics that have built-in commands
for cursor addressing will encourage better screen
layouts than those that do not. The same holds
true for BAsics with graphics commands. BASIC is
well supplied with input/output commands —
INPUT and PRINT are fine for simple programs. But
for real control of input (the kind needed to
produce a form containing protected input fields,
for example) try experimenting with GETS,
INKEYS, INPUTS() and similar commands. PRINT
USING is an extremely versatile command for
formatting output; it is invaluable for aligning
decimal points and for justifying columns of text.

Micronet 800 ‘Log-on’

USER PSYCHOLOGY
. The user is the most unpredictable element in any
man-machine system. Like any other component,
though, the user has certain performance
characteristics that must be understood before the
interface is designed.

People share with computers the basic
characteristic of being ‘information processors’.
However, human beings have inherent limitations
on the amount of new information they can hold in
‘working memory’ — it has been reckoned that for
most types of information around seven different
items may be held in the brain at one time. The size
of these items depends on how meaningful or well
structured they are. If the information to be
remembered consists of random characters, each
item will consist of no more than a single character.
But if the characters are not random but form

common surnames, each item remembered could
be an entire name. Increasing the structure of the
information in this way increases the user’s ability

to remember and make use of it.
There are several ways of helping people to

structure information when using computers. One
method is to relate data to familiar, well-
understood structures — this is the way that the
Lisa-style “desk-top’ metaphor works. Similarly, a
financial spreadsheet package may be organised
to look like a book with pages, indexes, etc.
Another method is to train the user to understand
unfamiliar structures. By repeatedly showing
examples, and explaining topics in depth, the
program itself may be used to teach the user how
the information should be structured. The

Apple Macintosh

drawback with training of this type is that it is.
expensive in both time and effort. Detailed
instructions, ‘help’ screens and ‘signposts’ may
provide a type of on-line training, but these can be
difficult to use efficiently.

- Finally, presenting information in recognisable
patterns can help the user to understand the
program. This can be done by using colour or
layout to lead the eye to the desired information.
To understand what this means, consider colour-
coding as it is used in Prestel and similar videotext
programs. On a typical page, the heading and
‘footer’ will be set in blocks of the same colour;
there will be a single background colour, and text
will be displayed in two other colours, with
alternate paragraphs in each colour. Key words
may be highlighted by using yet another colour.
The purpose of this is to allow the user to select
only the information required and to ignore whole
sections of the page if these sections contain
information of no immediate value. Colour-
coding can be confusing if it is over-used, however,
and tests have shown that people may waste time
reading and re-reading paragraphs to try to
understand the significance of an entirely arbitrary
colour change! A good rule of thumb is: never use
more than four colours at once.

Three Degrees —
These photographs of
microcomputer operating
systems illustrate three varying
degrees of user-friendliness. In
the first photograph, a new user
is attempting to communicate
with the CP/M operating
system. CP/M has no built-in
‘help’ features, so requires a
thorough knowledge of
commands before it can be»
used properly. Our second
example is a menu-driven
system — the ‘Log-on’ menu
for Micronet 800 on the BBC
Micro. Options are clearly
numbered, and the user makes
his selection by entering the

appropriate number from the
menu. The screen does not offer
a great deal of information, so
the user must understand the
options before he can make use
of them. Our final photograph
shows the Apple Macintosh
Operating system, which
provides visual clues and
graphic displays, as well as
simple, easily understood
menus

THE HOME COMPUTER ADVANCED COURSE 513

-A microcomputer’s user port is the gateway
through which we can monitor and control
aspects of the world beyond the confines of
the machine. In this introduction to a new
Workshop series, we will look at how to
access your user port so that you will be able
to monitor physical phenomena such as
heat, light and force, and control external
devices — including a simple robot.

Many popular home micros have user ports that
allow entry to the computer’s memory map by way
of a series of electrical connections. The basis of all
digital systems is that the binary system of ones
and zeros can be easily represented by two voltage
levels. Normally, a zero is represented by 0 volts
and a one by +5 volts. |

Each memory location is made up of a group of
eight individual cells, each cell having a voltage
level of 0 or 5 volts. The pattern of these voltage
levels thus determines the number that is stored in
that memory location. If any cell has a voltage

level of +5 volts then we say that the cell is sethigh
and if the cell has a level of 0 volts then the cell is
said to be set low. The external connections of the
user port are electrically linked to one or more
locations in the micro’s memory, and by reading
values from, or writing values to, these locations
we can monitor or control electrical systems
outside the computer.

There are two types of user port connections.
Some ports have separate groups of pins (eight for
input and eight for output) linked to two locations
in memory. Others use the same eight pins for both
input and output. In this part of the series, we will
look at the second type of configuration,
as used by the BBC and Commodore 64 micros.

DATA DIRECTION REGISTERS
In addition to having a location linked to the eight
pins of the user port, micros with bi-directional
ports make use of a second memory location,
known as the data direction register (DDR). This
register determines whether each of the eight lines
is to send or receive data. A one in the DDR sets a

ee Siecle

7 ——

KEVIN JONES

line to output mode, and a zero allows input to be
received. To set all eight user port lines to output,
the DDR would have to be set to 255 (Le.
11111111 in binary). Similarly, all eight lines can be
set to accept input by setting the value in the DDR
to zero. The eight lines can be configured in any
combination of input or output lines by setting the
appropriate value of the DDR. For example, the
most significant four lines of the user port could be
set to output mode, and the least significant four to
input by placing the value 240 (i.e. 11110000 in
binary) in the DDR.

D7 D6 DS DA D3 D2 ODI

it
20

DATA aU
REGISTER a

ioo
150

DDR=240 200

PORT PINS eal

data register contents:

ch Dy lel Ao ool a aaa

~ REM*
5 Sr uays bareete ie eee Oe

The data and data direction registers have the ©
following addresses:

The following program sets the user port so that all
eight lines may be used for input, and displays the

DATREG DISPLA ae

DIM ABCIO} rA$CO)S"E" :Ae¢12="H"
DATREG=56577 :DDR=56579
POKE DDR,O: REM = INPUT ONL

PE=PEEK(DATREG? :GOSUB S00
PRINT"DATREG =";PE;"=";B
GoTo 100

REM* BINARY CONVERT S/R #

BS="" :N=PE |
FOR D=i To 8
NISINT(N/2) :R=N-2#N1
PSAs (CR) +E$ N=N1
NEXT D:RETURN

On the BBC Micro, make these changes:

DATREG=4 FESO :DDR=&FES42
SDOR=.

PE=?¢ PE) rGO0SUB S00

pei
ee

_
ee

ce

ay He
Be

Se OEE Sc EEE SEPERATE CC AES

spelen Te

pases bene See een RRC SAE Vt a RSDP EDEL OP SATE TR SSRIS ESO AT SOR RES EREEIE

RUNning the program shows the normal contents

of the data register to be 255 (shown on screen as

HHHHHHHH), which means that all eight lines are
high, and all eight cells of DATREG are at voltage

level +5. If you now plug a lead into the user port,

you can use it to change the voltage levels on the

lines, and, therefore, change the numerical

contents of DATREG. |

We have wired 10 lines to the user port: eight of

these are data lines — one line for each bit of

DATREG — and the others provide a ‘case ground’

or ‘earth’ for the system. Touching a data line to an

earth line will pull the data line’s voltage level

down to zero, thus changing the voltage levels in

DATREG. If you earth DO, for example, while the.

program is running, you will see that DATREG now

contains 254 (shown on the screen as HHHHHHHE),

meaning that the least significant line is at earth

voltage (Ov), while all the others are high (+5v).

You might like to try different combinations of

lines to assure yourself that you can, by these

means, make DATREG contain any number

between zero and 255.

DATA
REGISTER

WRITING SOFTWARE
The essence of computer decision-making is the
testing of numeric values or conditions and
branching according to the result obtained in the
test. Therefore, it is a simple matter to design
software that can monitor physical activity via the
user port. By testing the value of the data register
and taking the appropriate action, the computer
can respond to external changes. A simple
example would be to design a program that checks
to see if a telephone number has been ‘dialled’
correctly. Dialling can be done by grounding out
certain data lines connected to the user port to
produce the correct numeric value in the data
register for each digit in the telephone number.

516 THE HOME COMPUTER ADVANCED COURSE

/

Because of the difficulties involved in
simultaneously grounding a number of data lines,
the program waits for the user to press a key on the
keyboard before analysing the contents of the data
register. The logic for the program is shown in the
accompanying flowchart and is quite easy to
follow.

1%] REM* TELEPHONE NUMBERS #
{OD REMPRee eee eee lL Adee eee eee

(20: ,

130 BATREG=S45 77 :bbReitahe?

140 PORE DDF,O:REM = INPUT ONLY
q ;

140 INPUT" TELEPHONE NUMEER* : TN

80 FOR Kei TO LENC TNS?
OGE=HIOSCTNE,K, 1): REM GET GIGIT
IF DSt<>" * THEN BOSUE 500
NEXT KE | Mo Rg et do

a ae

Le hal got Pe ae, al

eS
PRINT* =------S0RR¥=------"
PRINT® WG ONE 1S IN AT *3TNe
PRINT” PLEASE CALL LATER”
PRINT: PRINT 2 RUN

ee tee

1] etl Fa)

Ps i ATS a PEMAeCONVERT & CHECK SoRe*
Cie ASL { Dae 2 ;
PRINT*SET UF GIGIT G4 TRE LINES”
eR Thy" aN HIT aly REY?
GET GT&:IF GTe="* TREN Pon
PEZPEEKCDATREG::IF PE2DG THEN

My BE" GE” ; RETURN

te. A a ee do at Ga tha

Al aoe RE Se
1 ot

|

4] a

1a! geal tat A

Fe a

0

fits i ae <

PRINT* SS SR0NG NUMBER???"
PRINT THe" {:"LEFTS° TNS ,E=-143Pe
FRINT* oo TRY Ge TN
PRINT: PRINT : RN

Gi
ree:

“alt “all “aly “a
ha et Al

at, TE, Oy Uy

“ll at te

On the BBC Micro, make these changes:

DATREG=SS FEAR: DDRetFEes

2bDRm i

e2ZGET
FES ?(DATREG):IF FE2OR THEM

Hy DS” OY RETURN

he cee
eee Se

gel A tet

rng

PR ts

In this introductory article, we have looked at
inputting information from an external source in
order to affect the flow of control within programs.
In the next instalment, we shall look at output via
the user port and the design of a simple computer

- control system.
Crossed Lines
The Telephone Numbers
program accepts as input a
telephone number (any
format, any length), and
checks its digits one-by-one
against the contents of the
user port memory location.
Spaces in the input number
are ignored. The program
waits for a keypress before
comparing an input digit with ©
the user port digit)

BLACK MAGIC

Synapse Software’s Necromancer, written
by Bill Williams, can be compared to a
‘well-made play’. The scenario is divided
into three acts: the seeds of the drama are
literally sown in the first act, and the plot
moves remorselessly to a_ climactic
encounter between good and evil. |

The Overture Both Atari and Commodore 64
versions are easily loaded: the slow haul of the
Commodore’s sluggish disk drive is made
tolerable by the program producing a range of
curious noises — rather like an electronic
orchestra tuning up. The title graphics are
accompanied by introductory music that uses the
sound capabilities of each machine to the full.
Act One: The Forest The drama begins in ‘the age
of darkness’ when “Tetragorn, the evil wizard,
reigns supreme’. You play the part of Illuminar, a
druid described as ‘the defender of truth and
protector of the human race’. As you can imagine,
this isn’t an easy task. Play starts with the druid
appearing in a dark open space. An aura of stars
protects you from hundreds of little ogres that
march relentlessly across the screen waving giant
cutlasses to an insistent musical accompaniment.
You use the joystick to control a magical ‘wisp’ _
that flies around the screen destroying the ogres
and notching up points before returning to your
hand.

Placing the wisp in the desired space and
pressing the joystick button enables you to plant
trees in an attempt to create a forest that will aid
you later in the game. You must protect the
seedlings from the ogres’ cutlasses and
Tetragorn’s spiders, all the while keeping an eye
on your strength, which is sapped by the sting, or
invigorated by the death, of a spider. After five
levels of play, the first act ends in the spiders’
attack, which quickly exhausts the druid’s
strength. The program then freezes the action,
counts the number of trees you have grown and
places the druid in the next act.
Act Two: The Vaults It is here that the spiders
hatch. There are five different levels, each one
containing two layers of four vaults. Inside the
vaults are spider eggs, which flash in different
colours when they are about to hatch. Also on-
screen is the ‘tree bin’ (containing the trees you
grew in the first act). You must use your wisp to
release and move atree to a position above one of
the vaults; if you’re quick, the tree will grow roots
and smash through the top of the vault to destroy
the eggs before they hatch. |
An added danger is supplied by the ‘hands of

fate’; these reach down from the ceiling and grab
at anything underneath them — druid, trees or
question marks. The latter are used to represent
mystery prizes, and one must be acquired before
you can lower a ladder to the next level.
Act Three: The Necromancer’s Lair The climax of
the drama is enacted in an eerily dark graveyard.
The tombstones mark the many graves of the
Necromancer and must be destroyed to prevent
his re-incarnation. The wisp is powerful enough to
kill each incarnation, and the gravestones
themselves disappear if you move the druid on top
of them. But the battle between good and evil isn’t
that simple, as all the spiders that escaped you in
the second act are transformed into ‘zombie’
spiders and come to the Necromancer’s defence.

It is imperative to reserve plenty of energy for
the Lair, because here you must have all your wits
about you. Certainly, the last act can be highly
frustrating, as it is not possible to access it
independently of the rest of the game.

Of the two versions of the game, the Atari
implementation is the better. The Commodore
version is slower and contains slightly less
spectacular graphics and sound. Both versions can
suffer from joysticks that give jerky and slow
responses. These quibbles aside, however, owners
of either version should find thisamagnificentand ,,.

anti ‘ : Visual Treat
enchanting — albeit expensive — game. Necromancer combines sprite

7 grahics with high-res
background displays to produce
dazzling screens at all three
levels-of skill. The glittering
tree-tops, rapidly-darting
druid’s wisp, the movement of
the spiders and ogres, |
and the necromancer’s fire
make Necromancer a stunning
visual treat as well as an
exciting game

(SG se eS

Sas Esteves:

a

a
ae eR

: CL

eo ae cae PS RG SIR IS I | es if

coe
. a

. He

LIZ HEANEY

THE HOME COMPUTER ADVANCED COURSE 517

HIGHLY PROCESSED
CODE —
Our machine code course continues with
the first in a series of articles that takes a
close look at the Assembly language of the
6809 processor, which is used in the Dragon
and Tandy Color home computers. We
begin with an explanation of the role of the
registers in the functioning of the processor.

A microprocessor can be regarded as having three
main components: the registers, which are parts of

_ memory inside the processor; an ALU (arithmetic
and logic unit) where certain simple mathematical
operations can be performed on the data stored in
the memory; and a control unit that makes
everything happen in the right sequence at the
right time.

At its lowest level of operation, the
microprocessor responds to voltage signals
applied at some of its external connections to
change its internal state (the contents of its
registers) or to send and receive other signals. By
representing the presence of a voltage as a one and
its absence by a zero, we can think of these signals
— travelling back and forth between the processor
and memory, or within the processor itself — as
numbers in binary notation. In this way, we can
program the processor by applying a sequence of
numbers as instructions for it to act on. The very
lowest level of programming, therefore, involves
thinking in terms of binary (or hexadecimal)
numbers. It requires a knowledge of the effect of
each number, or instruction code, on the
processor. | |

An eight-bit processor, like the 6809, can send
and receive binary numbers with eight bits, which
gives a range of decimal numbers between 0 and

~ 255. Many of the numbers are used to refer to
addresses of memory locations, which on most
eight-bit processors are given as 16-bit numbers
(allowing for a range of memory locations
between 0 and 65535). Of course, when dealing
with these numbers, the processor is capable of
transferring them only eight bits at a time.

6809 REGISTERS
The registers in a processor can take many forms,
depending on their particular functions. Some are
reserved for the internal use of the processor and
cannot be accessed by the programmer. There are.
four main 6809 registers that the machine code
programmer will use a lot.

The most commonly used register is the
accumulator. This is where most of the data being
used is stored and manipulated. For example, the
usual function performed by an Assembly

518 THE HOME COMPUTER ADVANCED COURSE

language ADD instruction is to add the contents ofa
specified memory location to the contents already
stored in the accumulator. Thus, a new value will
‘accumulate’ in this register.

_ The index register is used to modify addresses
so that we can step through tables and lists of data
easily. When an instruction refers to a memory
location using indexed addressing then the
contents: of this register are added on to the
address given in order to specify the effective
address of the data required. To step through a
table of data, we have only to refer to the base
address (of the first item of the table) and keep
incrementing the index register. As the values
stored in this register are normally addresses,
index registers are generally 16 bits long, rather
than eight.

The stack pointer is the register that indicates
the location of the top of the stack, which is a
convenient way of storing data and retrieving it
quickly. The stack is used when it is necessary to
save the internal contents of the processor (for
example, when a subroutine is called) so that they
can be restored later. The contents of some, or all,
of the registers can be ‘pushed onto’ the stack and
then ‘pulled off later when control returns to the
main program. The stack pointer simply tells the
processor the location of the last item put into the
stack and where it can save or find the next item.
Because they also refer to addresses in memory,
stack pointers are generally 16 bits long.

The fourth register is very important, although
its function is automatic most of the time. This is
the program counter, which should always contain
the address where the next instruction is stored.
The processor goes to the location specified by the
register, fetches the contents, interprets their
meaning and acts on that instruction. Normally,
the program counter will automatically be
incremented as instructions are carried out, so that
the instructions are fetched in sequence. Altering
the contents of the program counter (by storing a
new value there, or adding to or subtracting from
the old value) will change the course of the
program. In other words, this acts like a GOTO
instruction, although at this level it would be
referred to as a Jump (JMP) if a completely new
address was provided, or a branch (BRA) if the
current address was altered.

There is a fifth type of register, although it does
not operate in the same way as the others. This is
the condition code register, which is best thought
of as a collection of individual bits, each
representing some feature of the state of the
processor. For example, one of these bits is used to
signify to the processor whether the number

formed as a result of an operation in one of the
registers is zero. For example, we can step through
a table of values by loading the total number of
values into a register and subtracting one from the
total every time we deal with a value. When the
total reaches zero, the condition code bit tells the
processor it has no more items in the table to deal
with and can go on to another instruction. This
type of instruction allows us to perform selection
(|F statements) and looping (FOR... NEXT,WHILE...
WEND, REPEAT . . . UNTIL statements).

Many processors maintain a zero page, which
normally consists of the first 256 memory
locations (from hex 0000 to OOFF). Values stored
here can be accessed using an eight-bit address,
thus making the instructions shorter and quicker
to perform. The 6809 processor generalises this
concept by having an eight-bit direct pageregister
that provides the extra eight bits of the full address
when referring to the zero page. By changing the
value in this register, the zero page can be
positioned anywhere in memory, or you can even
have more than one of them.

A machine code program will consist of a
sequence of instructions intermingled with data
and addresses. Some people can actually program
satisfactorily dealing directly with numeric values
for all these quantities, but most of us would find
this rather difficult. The Assembly language of a
processor enables us to write machine code
programs using much more _ convenient

mnemonics (for instructions) and labels (for
addresses and data). Thus, for example, if we need
to load the data at a memory location into the
accumulator we can write:

STORE FCB O :

to reserve a place in the memory that we can refer
to as STORE, in which we have temporarily placed
a zero. FCB is not really an instruction, but a
directive telling the program that translates
Assembly language into machine code that it must
substitute a particular address whenever it
encounters the word STORE. Later in the program
when we want the value stored there to be loaded
into the accumulator we can use the instruction:

LDA STORE

which will take whatever value is stored there and
load it. :

Assembly language programs need translating
before they can actually be run and this is the job of
a program called the assembler. These do not
need to be complicated programs because there is
almost a one-to-one relationship between the
Assembly language statements we write and their
machine code equivalents. All that has to be done
is to make the substitution and keep track of which
names refer to which values or addresses.

In the next instalment, we shall study the
internal structure of the 6809 processor more
closely, and start to look at what instructions we
have available to us.

Popular Choice |
The two most popular 6809
machines are both home
computers: the Dragon 32K
and 64K, and the Tandy Color
Computer. There is also a wide’
variety of 6809 development
systems in use in universities
and polytechnics. The Tandy
Color Computer and the two
Dragon models are very similar
internally, and although Dragon
Data has left the computer
marketplace, Tandy has agreed
to provide software and
technical support for Dragon
users

THE HOME COMPUTER ADVANCED COURSE 519

Integrated Suite
Psion’s Xchange is a suite of
integrated business software
packages based on the software
created for the Sinclair QL.
Xchange includes the Quill word
processor; Archive database
manager; Abacus financial
planner and Easel business
graphics system. The four
packages may be purchased
together or separately. Xchange
is available for the IBM PC and
PC XT, ACT Apricot and Apricot
XI, and the Sirius |. Additional
versions are planned for the
Apple Macintosh and Digital
Rainbow —

Leading Ligitt
Dr David Potter is the founder

and majority shareholder of
Psion. Formerly an academic

- who specialised in
Computational Physics at
Imperial College, London, and
the University of California, he
founded Psion as Potter
Scientific Investments

Psion is a company generally associated
with Sinclair Research: it produced the
Horizons program for the Spectrum, and
developed the four applications programs
that come with the QL. Recently, it has
diversified into business software and
ventured into the hardware market with its |

Psion was founded in 1981 by Dr David Potter, a
lecturer at Imperial College, London. The
company’s first marketing coup was a group of
four packages for the newly-released ZX81:
Flight Simulator, Backgammon, Vu-Calc and
Vu-File, all of which were written by Charles
Davies and Colly Myers. This small range of
quality programs — a simulations package, a
game, a spreadsheet and a database —
immediately established the company’s name. In
1982, when Sinclair Research came to
commission a package to demonstrate the
strength of the Spectrum, it was not surprising that
Psion was the software house chosen to develop
the cassette.

The popularity of Sinclair’s machines has
resulted in a large market for Psion’s software.
The company has had some notable successes: the
combined sales of the ZX81 and Spectrum
versions of Flight Simulator, for example, have
exceeded 500,000 copies. Estimates for the total
worldwide sales of Psion cassettes have passed the
three million mark. And with its recent
announcement of the ‘Xchange’ range of
software, Psion showed its first signs of a desire to
diversify — in this case by making a bid for part of
the £2 million business software market.

Psion has always been an innovator. It led the
way in developing the technique of ‘cross-
compiling’ software for home computers, a
process whereby a program is developed on one
machine for use on another. The Horizons
introductory package for the Spectrum was
written on a Tandy TRS-80. Today, the company
uses two VAX 750 minicomputers for all its
software (see page 381). It was on these machines
that the QL’s suite of programs — Abacus (a
spreadsheet), Archive (a database), Easel (a
graphics program) and Quill (a word processor)
— was written. Psion Support has organised
QLUB, a helpline for QL users that guarantees a
written reply to queries within 48 hours.

Plans are well advanced for a number of
business programs for the IBM PC, Apricot,
Sirius, DEC Rainbow and Macintosh computers.
Like the QL suite, the Xchange range of program

520 THE HOME COMPUTER ADVANCED COURSE | |

features a spreadsheet, database, graphics
program and word processor. What sets these
apart from other business packages, Psion claims,
is the ease with which data can be transferred
between them.

Another development from Psion that has
gained a lot of attention is the Organiser (see page
441). The appearance of a pocket computer from

af
=
io
=

=
S
Oo
=
=
=

what had been regarded as a software company —
came as a surprise to many people. A company
spokesman, Robin’ Kinnear, puts
development in perspective: ‘The key is that Psion
is a microcomputer software company. We
thought of the Organiser as a very smart idea in
terms of software packaging and looked around
and found there was nothing comparable. So
Psion decided to make its own hardware. The
development was very much software-led.’

At the moment, only three applications
packages (science, maths and finance) are
available for the Organiser, along with the eight
Kbyte and 16 Kbyte RAM packs (or ‘datapaks’ as
they are called). Psion is considering adding other
program packs, and it has also been approached
by a variety of individuals who wish to write
software for the machine.

Market expansion is another company priority
at the moment: subsidiaries have recently been

the

established in the United States and South Africa, —
and contracts for extensive distribution of Psion
products throughout Europe have been signed.
Furthermore, Sinclair Research has launched a
big sales drive in Eastern Europe, beginning with
the export of 400 ZX81s to Czechoslovakia.
Psion, which has already taken some trouble to
produce foreign language versions of its software,
is sure to follow.

OX
ros

<2

x

: Sis po
: the ye =

e oe

= —

ae

5 C a SS, ae

\ 7eral ed Or ‘,

at aliow men
- —

U eix home mi

:

" en
y

9 a\¢. esi: rnevV 11ce

F wey «<

6 ona

a
: Soe.

licronet “also
y uN 4io%.

apie 9 a 5 <a Jrvden’, Derwe 2 Ente E ed
their<countermarts“in a Ww aoe sia: 2 ae,

XDerT C C)mas(cnee a = a ves - beg rome Ye) micro, Inmany ca

e Aas - at ime meg @ ky Oe: otis better 2h

D ag: eo) agarchareya ais $510 20 ae
e —— sees

oe ma
seceieaels

Eee oi

Sian
oo wate ‘Ser oes ce. aiei

IMAGES PRODUCED ON THE ARTRON 2000 STUDIO COMPUTER; COURTESY OF GRAPHIC PRODUCTS, LONDON (EXCLUSIVE DISTRIBUTOR) Ch

